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Abstract - We investigated the potential use of EMG
recordings from voluntary shoulder muscles in
individuals with C5 spinal cord injury to automatically
control the stimulation to paralyzed shoulder muscles in
a task-appropriate manner. A musculoskeletal model of
the human shoulder and elbow was modified to have
maximum muscle forces appropriate for C5 spinal cord
injury, including completely and partially paralyzed
muscles. Inverse model simulations generated muscle
activation levels that were used to train an artificial
neural network (ANN) to automatically generate
appropriate stimulation patterns for the “paralyzed”
muscles based on “voluntary” muscle activations. We
found that substantial additional shoulder strength
could be provided by assuming that just two paralyzed
muscles (pectoralis major and latissimus dorsi) were
stimulated. Further, the needed activations of these
“stimulated” muscles could be predicted with reasonable
accuracy using the activation levels just two “voluntary”
muscles (trapezius and rhomboids) as ANN inputs.
Keywords - FNS, FES, shoulder, EMG, artificial neural
network, musculoskeletal model, spinal cord injury,
paralysis, ANN

INTRODUCTION

Spinal cord injuries at C5-C6 typically result in
paralysis of several important shoulder muscles (e.g.,
pectoralis major, latissimus dorsi, and serratus anterior) and
result in a significant loss in upper arm mobility [5]. In
particular, these individuals have difficulty performing
many activities of daily living that require manipulation
ability in front of the body (horizontal flexion motions such
as stabbing food with a fork), reaching above horizontal
(e.g., reaching for books on a shelf), and adduction (e.g., for
shifting body weight). Functional neuromuscular
stimulation (FNS) can be used to produce contractions in
upper extremity muscles that restore some of these
functions, but providing the user with control of this
stimulation in a natural yet effective manner is a significant
challenge. Methods used previously to control FNS for hand
grasp and release rely upon the motion of another body part
(contralateral shoulder or ipsilateral wrist) and are not
appropriate for the shoulder because there are too many
degrees of freedom for these to be controlled in a reasonably
natural manner.

We have investigated the possibility of using
electromyographic (EMG) signals from shoulder muscles
with retained voluntary control to control the stimulation to
shoulder muscles that are paralyzed. Individuals with C5
tetraplegia typically have paralysis of several important
muscles (e.g., pectoralis major and latissimus dorsi),but
retain at least partial voluntary control over a number of
other muscles (e.g., deltoid). We are investigating the use of
EMG signals from voluntary muscles to automatically
detect the motion intended by the user and then to assist
them in an appropriate manner through stimulated
contractions to achieve this motion over a wider range, with
greater force, and with better movement accuracy. Previous
work [1] has demonstrated that the EMG signals from the
muscles with voluntary control in individuals with C5
tetraplegia contain a significant amount of information
about shoulder motions and indicate that it should be
possible to determine where the arm is positioned (joint
angles) and where it is going (velocities and accelerations).
However, these methods did not indicate how to stimulate
paralyzed muscles to augment the desired motions.

In this study, we used a musculoskeletal model of
the human shoulder to determine the feasibility of directly
predicting needed muscle stimulation patterns from the
voluntary activation patterns of other, non-paralyzed
muscles. Simulations performed with this model indicate
that shoulder horizontal flexion and adduction can be
significantly improved in C5 tetraplegia using FNS four or
fewer muscles. A simple artificial neural network was
successfully trained using model-generated data to predict
needed stimulation patterns for the “paralyzed” muscles
from the activation patterns of muscles that would be
expected to retain voluntary control. This implies that
automatic control of shoulder FNS via EMG recordings
should be possible. The methods developed here could also
be applied to other shoulder motions or to other joint
systems.

METHODS

 The basic approach taken in this study is
illustrated in Figure 1.  Figure 1(a) shows the eventual
practical system whose feasibility was evaluated in the
present study. EMG activities in a set of voluntary muscles
are used as inputs to an artificial neural network (ANN) that
has been trained to determine task-appropriate stimulation
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parameters for a set of paralyzed muscles. Figure 1 (b)
illustrates the approach taken here, where a musculoskeletal
model of the human shoulder [7] was modified to reflect C5
SCI, and used in simulation to estimate the activities in
voluntary muscles as well as the stimulation needed for a set
of selected paralyzed muscles. Thus, the model simulations
were used in this feasibility study to replace experimental
procedures in real human subjects. These model-generated
muscle activities were then used to develop the ANN
controller.

Musculoskeletal model of the shoulder
Inverse simulations using a three-dimensional

musculoskeletal model of the human shoulder and elbow [7]
were used to estimate muscle activation patterns needed to
maintain the arm in a series of specified postures. The
model includes descriptions of the bones of  the shoulder
mechanism (thorax, clavicle, humerus, and scapula) and the
elbow (radius and ulna), thirty-one shoulder and elbow
muscles, and three extrascapular ligaments.  Each of the
muscles, many of which have large attachment sites, is
divided into as many as six independent elements [6]. The
maximum force that can be produced by each muscle is
limited by its physiological cross sectional area (PCSA),
estimated for the able-bodied population by cadaver
dissection [7].

The able-bodied model was modified in this study
to reflect C5 tetraplegia by decreasing the maximum
voluntary forces that could be produced by muscles with
partial or total paralysis.  The actual maximum voluntary
forces that can be produced by the shoulder muscles in an
individual with a given level of tetraplegia will vary with
the details of the injury. For this study, representative
maximum voluntary force values for a generic C5 individual
were estimated based upon (1) the median Manual Muscle

Test grades of 22 individuals with C5 tetraplegia obtained
during clinical evaluations and (2) the known segmental
innervation of these muscles [4] and the level of spinal cord
injury.

In a first set of simulations, the effects of FNS of
paralyzed muscles (coracobrachialis:Cb, pectoralis
minor:PMi, serratus anterior:SA, latissimus dorsi:LD,
thoracic pectoralis major:PMT, and clavicular  pectoralis
major:PMC) were evaluated by assuming that a completely
paralyzed muscle could produce force if stimulated. In these
simulations, the maximum force of each paralyzed muscle
was assumed to be 50% of the same muscle in the able-
bodied model.  This arbitrary assumption (also made in [9])
probably represents a best-case scenario. It was also
assumed that each of the several sub-elements of each
“stimulated” muscle were always activated at the same
relative level, simulating uniform FNS of the whole muscle.

Inverse static simulations were performed with the
model to compute the set of muscle forces that minimized
the sum of squared muscle stresses across all muscles while
balancing various applied loads in various humeral postures.
The internal kinematics of the shoulder (i.e., scapular and
clavicular positions and orientations relative to the thorax)
were assumed to be identical to the able-bodied results
previously presented [8, 2]. Note that this would be an ideal
goal to be achieved in an actual neuroprosthesis.
Simulations were performed at 21 static locations
throughout the workspace of the humerus (30, 60, 90, 120,
and 150° of elevation in three planes: abduction (coronal),
flexion (sagittal), and scapular (30° from coronal toward
sagittal)). In different sets of simulations, the maximum
external loads in abduction, adduction, horizontal flexion,
and horizontal extension that could be sustained by the
“voluntary” musculature for each posture were determined
by systematically increasing the simulated load until no
combination of available muscle forces could be found to
balance the load.

Artificial neural network
The musculoskeletal model simulations described

above produced  sets of muscle activations, both
“voluntary” and “stimulated”,  for each of the conditions
tested. An artificial neural network (ANN) was trained to
predict needed “stimulation” levels in the “stimulated”
muscles using the activations of a small set of “voluntary”
muscles. A static, two-layer ANN was used in this study,
with “tansig” neurons in the hidden layer and linear neurons
in the output layer. This structure was chosen because it has
been shown to be capable of predicting arbitrary non-linear
input/output relationships [3]. The network was trained via
backpropagation using the model-estimated muscle
activations (“voluntary” ones for inputs, “stimulated” ones
for outputs) from all arm positions and external loads of 20,
40, 80, and 100 percent of the maximum sustainable load.

Figure 1: Model-based methods used in this study



The training procedure iterated until the sum of squared
errors (SSE) between the actual variables (model-estimated
“paralyzed” muscle activations) and those predicted by the
neural network changed by less than 1% over 50 iterations.
The network was trained for a minimum of 50 iterations to
insure that the algorithm had not converged to a local
minimum.

The predictive ability of the ANN was evaluated at
all simulated arm positions for external loads of 60% of the
maximum sustainable load in each direction for each
posture (a total of 84 conditions over 21 positions).
Predictive ability was quantified in two ways. First, the
root-mean-squared (RMS) error between the
musculoskeletal-generated activations and the ANN-
predicted activations was computed. Because the activations
ranged between 0 and 1, this RMS error is expressed in
terms of maximum activation. Second,  the forces that
would be produced at the end of the humerus by the set of
ANN predicted muscle activations were computed using the
musculoskeletal model and compared to the forces that were
originally applied in the musculoskeletal model simulations.
The differences between these forces indicate the
mechanical (and presumably the functional) impact of
ANN-based activation prediction errors.

RESULTS

The static artificial neural network (ANN) was
trained as described above to
predict needed activation patterns
for four “stimulated” muscles
(SA, Cb, LD, and PMT) using
sets of two (TC and Rh) or four
(TC, Rh, BiS, and Inf)
“voluntary” muscles as inputs.
Figure 2 illustrates the predictive
ability of the ANN for each of the
four stimulated muscles its
primary actions. Each panel in
this figure plots relative (to
maximum) activation along the
radial direction, while the angular
coordinate indicates the angular
position of the arm in elevation.
The three rows of  panels
illustrate results for the three
different planes of elevation
examined. The thick black lines
in each panel indicate the
activation originally computed by
the musculoskeletal model, the
target for subsequent ANN
predictions. The thin solid line in
each panel indicates the activations predicted by the two-

input ANN, while the dotted line indicates the activations
predicted by the four-input ANN. As described above, the
model is generating an external force corresponding to 60%
of the maximum that can be sustained in each of the three
indicated directions (horizontal flexion for the columns A
and B, adduction for columns C and D, and abduction for
column E). Note that the ANN predicted activations for
“stimulated” muscles for force directions other than those
presented here (e.g., PM activation during abduction), but
the conditions included in Figure 2 required the best
prediction of activation levels and were thus the most
functionally relevant.

In general, the four-input ANN predicted needed
muscle activations better than the two-input ANN.
Activation of the SA (shown for abduction forces in Figure
2, column E) was needed in all postures at all elevation
angles, and the network accurately predicted these
activation levels across all arm positions and external
loading conditions. The average RMS prediction errors for
the  two- and four-input ANNs were 9 and 7%, respectively.
The Cb (column B) was needed mostly for horizontal
flexion forces in each of three elevation planes tested, with
average RMS errors of 15 and 12% for two- and four-input
ANNs, respectively. The PM was also important for
horizontal flexion across all arm postures (column A), with
some limited action required in adduction (column C) at
lower elevation angles. Average prediction errors for PM

were 14 and 12%, respectively for the two- and four-input
ANNs. The LD (column D) was primarily needed for

Figure 2:  Artificial Neural Network predictions of muscle activations. See text for
explanation of plots.



adduction movements, and was predicted with average RMS
errors of 8 and 7% for two- and four-input ANNs,
respectively.

To evaluate the mechanical impact of the ANN-
based activation prediction errors on the actual moments
predicted at the shoulder, the musculoskeletal model was
used to compute the external forces at the distal end of the
humerus that would result from the ANN-predicted
activations. These forces were calculated for each of the
various conditions (different arm postures at 60% force in
four different directions) and compared to the external force
originally applied in the musculoskeletal simulations.
Ideally these forces would be identical.   Figure 3 presents
the results of these calculations for nine different arm
postures (elevation angles of 30°, 90°, and 150° in the
abduction, flexion, and scapular planes).  In each panel, the
thick gray lines indicate the musculoskeletal model-
generated forces in horizontal flexion (to the left),
horizontal extension (to the right), abduction (up) and
adduction (down). The four open circles in each panel
indicate the same forces generated using activations
predicted from the two-input ANN, while the filled circles
indicate the same force predictions of the four-input ANN.
In almost all arm postures, both the two- and four-input
ANNs accurately predicted both the magnitude and
direction of the needed external forces, indicating that the
modest errors in the ANN-based activation predictions
would have only minor mechanical consequences.

CONCLUSIONS

We have examined the feasibility of automatically
controlling the stimulation to paralyzed shoulder muscles in
a task-appropriate manner using the activity in other
shoulder muscles with retained voluntary control. A three-
dimensional able-bodied musculoskeletal model of the

human elbow and shoulder was modified to reflect C5
tetraplegia and used to train an artificial neural network
(ANN) to determine the ability of a small number of
“voluntary” muscle activations to predict the stimulation
needed in “paralyzed” shoulder muscles. These simulations
suggest that a maximum of four paralyzed muscles will
need to be stimulated to maximize horizontal flexion and
adduction forces and that two to four “voluntary” muscles
will be sufficient to automatically control the stimulation to
the paralyzed muscles. Although these results will have to
be verified through experimental implementation, the
model-based findings presented here indicate that a shoulder
neuroprosthesis for horizontal flexion and adduction should
be easily feasible with existing technology.

ACKNOWLEDGMENT

This work was funded by the US National Institutes of
Health (R29-HD32653) and by the VA Rehab. Research
and Development FES Center.

REFERENCES

[1] Au, A. and R. Kirsch (submitted). “EMG-based Prediction of
Shoulder and Elbow Kinematics in Able-bodied and Spinal
Cord Injured Individuals.” IEEE Transactions on
Rehabilitation Engineering 8: 471-480, 2000.

[2] de Groot, J. H. (1998). The Shoulder: A Kinematic and
Dynamic Analysis of Motion and Loading. Delft, The
Netherlands, Technische Universiteit Delft: 23-37.

[3] Demuth, H. and B., Mark (1998). Neural Network Toolbox
User's Guide:  For Use with Matlab, The Mathworks, Inc.

[4] Kendall, F. P. and E. K. McCreary (1983). Muscles, Testing
and Function. Baltimore, Williams & Wilkins.

[5] Trombly, C. A. (1989). Occupational Therapy for Physical
Dysfunction, Williams & Wilkins.

[6] Van der Helm, F. C. and R. Veenbaas (1991). “Modelling the
mechanical effect of muscles with large attachment sites:
application to the shoulder mechanism.” J Biomech 24(12):
1151-63.

[7] van der Helm, F. C. (1994). “A finite element musculoskeletal
model of the shoulder mechanism.” J Biomech 27(5): 551-69.

[8] van der Helm, F. C. and G. M. Pronk (1995). “Three-
dimensional recording and description of motions of the
shoulder mechanism.” J Biomech Eng 117(1): 27-40.

[9] Yamaguchi, G. T. and F. E. Zajac (1990). “Restoring
unassisted natural gait to paraplegics via functional
neuromuscular stimulation: a computer simulation study.”
IEEE Trans Biomed Eng 37(9): 886-902.

Figure 3: Force vectors predicted by ANN-predicted
“stimulation” compared to desired forces.


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


